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bivariate distribution for which v = 4. Since 2, = 2y = 2326 and 2y = 2,5 = 1282, we
findd that the approximate required sample size for the altemative T = 4 is

L M6+ 1.282)°

362,
.42

To be conservidive, we would ke r = 37,
14, Trend Tess, If we take X; = ¢,1 = 1,...,nand consider
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where

| ifa =0,
cla) = { 0 ifg=10,
-] if & = 0,

then K can be used as a test for a time trend in the univanste random sample ¥,. .., ¥a. This
uae of K to test for a time trend was gugpested by MMann (1945).

15, vher Uses for the K Statistic. Wilcoxon's rank sum fest {Section 4,13 and Jonckheere-
Terpstra's teat (Section 6.2) can be viewed as tests based on K (8.6) {or, equivalesuly, 7 (8.34)).
For this interpretation see Jonckheere (1954a) and Kendall {1962, Sections 3.12 and 13.9),
Ao, Wolle (1977) has used the K siatistic 1o compare the cormelation betwesn variables Xs
and X, with that berween the variables X'y and X, when both X5 and Xy are potential predictors
for X;.

16, Consiztency of the K Test. Under the assumpiion that (X, ¥ 3, ... 08, Fs) s a random
sample from a continwous bivariate population with joint distribation function Fy » (%, ¥), the
consistency of the tests based on K depends on the parameter + (8.2). The test procedures
defimed by (8.8). (8.9). and (8. 10} are consistent against the class of altematives corresponding
toor 2=, <, and # (. respectively.

17, Multivariate Concordance, Joe (1990} has generalized Kendall’s measure of associ-
ation t from the bivariate case where ¢ measures the sirength of association between pwo
variables X, ¥ to the multivariate case where X = (X, .. X, i3 an m-dimensional random
varinble and one is interested in a measure of the sirength of the association between the
components Xi,.. ., Xy of X, Let F denote the joint distribution function of X,

Filxi.... ) = FX) = 5 ond Xz = xpand ... and X, = 5x)
and denode the marginal distribution functions as Fy(r) = PUX; = o) = 1. .m The
null hypothesis of mutual independence of X,. .. X is

L]
HU:F{.t;,.-.._L,,}=HF‘.{.E‘.}. forall (x,. ... X
J=1

That is, the joint distribution ks egual 1o the product of the marginals,
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TABLE A3 Upper-Tall Probabdlithes for the Mall Distribution of the Kendall K Statlstic
n o= 4(140

Fora given n, the enry in e tabbe for the poist s Py (K & 1} Under these condithons, if xis sechihat Pk = 1) = o,
them &y = x. For cemain o, the eniries are terminated af £y, whene x, is the smallest possible walue of x such thas
Folk 3= x} is zero to three decimal places. (Far n = 440 er @ = 5(4137, all even inlepers between =aln = 1),/2
and nig = 1}/2 have posilive probability and for m = G438 of n = T(4)39 &ll ol inlegors betwoen < nin = 132
and wlw = 13/ have posilive probabaity)
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