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Nomenclature in evaluation of analytical methods, 
including detect ion and quantification ca pa bi I it ies' 
(IUPAC Recommendations 1995) 

Synopsis 
This IUPAC nomenclature document has been prepared to help establish a uniform and 
meaningful approach to terminology, notation, and formulation for performance characteristics of 
the Chemical Measurement Process (CMP). Following definition of the CMP and its Performance 
Characteristics, the document addresses fundamental quantities related to the observed response 
and calibration, and the complement to the calibration function: the evaluation function. 
Performance characteristics related to precision and accuracy comprise the heart of the document. 
These include measures for the means or "expected values" of the relevant chemical quantities, 
as well as dispersion measures such as variance and standard error. Attention is given also to 
important issues involving: assumptions, internal and external quality control, estimation, error 
propagation and uncertainty components, and bounds for systematic error. Special treatment is 
given to terminology and concepts underlying detection and quantification capabilities in chemical 
metrology, and the significance of the blank. The document concludes with a note on the 
important distinction between the Sampled Population and the Target Population, especially in 
relation to the interlaboratory environment. 
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1. OBJECTIVE AND INTRODUCTION 

Effective communication among analytical scientists requires a consistent and uniform system of 
nomenclature and convention for specifying the Performance Characteristics of the Chemical 
Measurement Process (CMP) which, following Eisenhart [l], we take to be  a fully specified analytical 
method that has achieved a state of statistical control. This measurement process, which may include 
substructure such as sample preparation and instrumental sensing, lies between the other two components 
of the overall analytical system, namely Sampling [2] and the Presentation of Results [3]. Central to all 
three of these tasks are the issues of precision and accuracy. For this reason we give special attention 

'It is recognized that "Terniinology" might be a more appropriate descriptor for the subject of this 
document, but the term "Nomenclature" is being retained in the title because of the links with the "Orange 
Book" (Cotnperidiurn on Arialytical Nomerrclature) and previous documents in this series, that were originated in 
the IUPAC Comrnissiori 011 Arialytical Nomericlature. 
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Nomenclature in evaluation of analytical methods 1701 

to these statistical quantities in our discussion of Performance Characteristics of the CMP [4], in order 
to help prevent arbitrary and inappropriate usage of terminology among the three areas -- e.g., 
"uncertainty" vs "inaccuracy" (See section 3.5.11.) 

Insofar as possible we shall conform to accepted statistical terminology and notation, even though this 
may occasionally lead to suggested changes from notation long popular with analytical chemists. A 
special effort will be made to distinguish between true (or asymptotic) values of parameters and observed 
or "estimated" values which necessarily exhibit the perturbations of random error. Also, the nature and 
validity of assumptions (such as normality) will be emphasized; and an effort to minimize information 
loss will be made by discouraging the use of ambiguous terms or incomplete reporting of data. 

1.1 Measurable Oua m. The International Vocabulary of Basic and General Terms in Metrology 
defines the measurable quantity as "an attribute of a ... substance which may be distinguished 
qualitatively and determined quantitatively" [5]. In the context of Analytical Chemistry, the attribute 
may refer to a physical quantity such as X- or y-ray energy, or it may refer to a measure of amount 
such as mass or concentration. 

The general expression Oualitati ve thus refers to analyses in which substances are identified 
or classified on the basis of their chemical or physical properties, such as chemical reactivity, solubility, 
molecular weight, melting point, radiative properties (emission, absorption), mass spectra, nuclear 
half-life, etc. Qumt itative refers to analyses in which the amount or concentration of an 
analyte may be determined (estimated) and expressed as a numerical value in appropriate units. 
Qualitative Analysis may take place without Quantitative Analysis, but Quantitative Analysis requires 
the identification (qualification) of the analytes for which numerical estimates are given. 

* 

r 

1.2 Andyte; M e a s u r d  These terms, as well as the analog "determinand" are employed in Analytical 
Chemistry to indicate the chemical entity involved. The preferred term for Analytical Chemistry is 

defined in the Compendium of Analytical Nomenclature (chapter lo), as "the element 
[substance] sought or determined in a sample ...'I [6]. The term Measurand, as defined in Ref. 5 is more 
encompassing: "the particular quantity subject to measurement." 

2. ANALYTICAL TECHNIQUESy METHODS, AND THE MEASUREMENT PROCESS 

An excellent classification scheme consisting of a hierarchy of Analytical Techniques, Methods, 
Procedures, and Protocols has been presented by Parkany [7]. Beginning at the broad level of the 
Technique, which is closely allied with a basic area of measurement science, each step of the hierarchy 
becomes increasingly specific; at the Protocol level, one finds "a complete set of definitive directions 
that must be followed without exception if the analytical results are to be accepted for a given purpose." 

Methods of chemical analysis thus can range from rather loosely specified adaptations of basic analytical 
techniques to explicitly defined test methods that meet the needs of regulatory agencies. Important 
terminology has been developed, however, to characterize analytical methods from the perspective of 
precision and accuracy. 

2.1 Rdhit ive Method . A method of exceptional scientific status which is sufficiently accurate to stand 
alone in the determination of a given property for the Certification of a Reference Material [8]. Such 
a method must have a firm theoretical foundation so that systematic error is negligible relative to the 
intended use. Analyte masses (amounts) or concentrations must be measured directly in terms of the 
base units of measurements, or indirectly related through sound theoretical equations. Definitive 
methods, together with Certified Reference Materials, are primary means for transferring accuracy -- 
i.e., establishing lraceability. 

Note: Traceabllltv * ' is defined as "the property of a result or measurement whereby it can be 
related to appropriate standards, generally international or national standards, through an 
unbroken chain of comparisons" [5]. 

0 1995 IUPAC, Pure and Applied Chemistry67, 1699-1723 



1702 COMMISSION ON ANALYTICAL NOMENCLATURE 

2.2 &ence Methard. A method having small, estimated inaccuracies relative to the end use 
requirement. The accuracy of a reference method must be demonstrated through direct comparison with 
a Definitive Method or with a primary Reference Material [9]. 

2.3 (CMP). An analytical method of defined structure that has been 
brought into a state of statistical control, such that its imprecision and bias are fixed, given the 
measurement conditions. This is prerequisite for the evaluation of the Performance Characteristics of 
the method, or the development of meaningful uncertainty statements concerning analytical results. 

3. PERFORMANCE CHARACTERISTICS OF THE MEASUREMENT PROCESS 

3.1 Structure of the CMP 

The general structure of the CMP is indicated in Fig. 1. Here, the symbol x represents the analyte 
amount (mass or concentration) contained in the sample or test portion [2] taken for analysis. The CMP 
that operates on x (solid box in the figure) consists of two primary substructures: sample preparation and 
instrumental measurement (first dashed-line box) that converts x to a signal or response y ,  and an 
evaluation unit (second dashed-line box) that transforms y back into an estimate R of the analyte amount, 

CHEMICAL MEASUREMENT PROCESS 

y = B + A x + e , ,  

y = signal 
B - blank A = sensitivity 

e, = measurementerror 

Fig. 1 Schematic diagram of the Chemical Measurement Process. (Adapted from Ref. 10) 

together with its uncertainty derived from the detailed structure of the system and/or external calibration 
(for a non-absolute measurement process) and error estimation. Two important control measures are 
shown above the diagram: SXM, which relates to control of the accuracy of the overall CMP through 
the use of Certified (or "Standard") R w c e  Mater ids; and STD, which relates to control of the 
accuracy of the evaluation (data reduction) step through the use of Standard Test Data. (See section 3.6) 
Treatment of the output of the CMP -- ie, Presentation of Results -- is the subject of a separate Report 
of the Commission [3]. 

Uncertainties introduced in both of the principal steps of the CMP become the basis for the statistical 
performance characteristics. Further detailed specifications for the structure may be necessary to bring 
these uncertainties within acceptable bounds, and to guarantee an adequate degree of ruggedness. 
Ruggedness means that the precision and accuracy of the method are insensitive to minor changes in 
environmental and procedural variables, laboratories, personnel, etc. Otherwise, imputed performance 
characteristics would depend upon a number of uncontrolled factors, and would have limited utility. 

The internal structure of the measurement process may include such steps as dissolution, chemical 
separation and purification, application of a particular instrumental measurement technique, plus the 

0 1995 IUPAC, Pure andApplied Chernistry67.1699-1723 
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detailed scheme or algorithm for data reduction. Internal replication, calibration, and blank estimation 
also would constitute elements of the CMP structure. In certain applications it may be appropriate to 
augment the structure to include sampling, and in others, to diminish it to focus on instrumental 
measurement. In any case, all of the structural elements of the specific measurement process ought to 
be indicated in a complete flow diagram. 

3.2 The Observed Signal; Calibration Function 

The Calibration Func tian is defined as the functional (not statistical) relationship for the CMP, relating 
the expected value of the observed (gross) signal or response variable E(y) to the analyte amount x .  The 
corresponding graphical display for a single analyte is referred to as the calibration curve. When 
extended to additional variables or analytes which occur in multicomponent analysis, the "curve" 
becomes a calibration surface or hypersurface. The functional relationship, E(y) = F(x), may in general 
be quite complicated -- and functions assumed (for data reduction) may be wrong, thus comprising a 
source of systematic error. We consider here only the simplest case, the linear calibration curve, where 
the observed s ipJlill or EQQBG y is given by 

y = F(x) t ey 
with 

F(x) = B + S = B + A x  

where S denotes the net; B, the b h . k  (or backeround or baseline, as appropriate); x ,  the analyte 
amount or concentration; and A ,  the m. The error e,, is taken to be random and normal, with 
zero mean (no bias) and dispersion parameter a (standard deviation). The estimated net signal is thus 

In the more general case of multicomponent analysis Eq. (1) takes the form 

y = F(x) + ey (4) 

where y ,  x, and ey are vectors, and the Calibration Function takes into account the response relations for 
all aiialytes and interferences. Under the best of circumstances, Eq. (4) is a linear matrix equation. 

Note: Symbols used to represent the calibration parameters vary among disciplines. In statistics, 
for example, it is conventional to use j l i  -- e.g., for a quadratic relationship: F(x) = jl, 
t j35 t jlyr'. In analytical chemistry, identification of j3, and jll with the blank B and 
sensitivity A ,  respectively, is valid only if the calibration data represent the entire CMP 
and the calibration relation is linear. 

3.2.1 w. In metrology and in analytical chemistry, the sensitivity A is defined as the slope of 
the calibration curve [5,6]. (If the curve is in fact a "curve", rather than a straight line, then of course 
sensitivity will be a function of analyte concentration or amount.) If sensitivity is to be a unique 
performance characteristic, it must depend only on the CMP, not upon scale factors. For this reason the 
slope dyldy must be defined in absolute terms, such as mVlyg. 

Notes: 
1. Alternative uses for this term in analytical chemistry, such as a qualitative descriptor for 

detection capability, or slope A divided by a, etc., are not recommended. 

2. It is recognized that the term "sensitivity" has different meanings for different disciplines. 
In clinical chemistry (diagnostics), for example, sensitivity is defined as "the fraction of 
all affected subjects in whom the test result is positive: best positivity in the presence of 
the disease" [ l l ] .  

0 1995 IUPAC, Pure and Applied Chemistry67,1699-1723 
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3. When a measurement process parameter is estimated by performing an operation on the 
observed responses, the resulting statistic is called an Estimator ; it is designated by a 
circumflex as shown in equations 3 and 5.  Thus, A indicates an estimator such as the 
least squares estimator for the sensitivity, and its standard deviation a($ determines the 
random uncertainty component for any particular estimate. If &A), the expzhhm * or 
mean value of the A distribution, equals the true value A ,  the estimator is said to be 
unbiased. (See also Section 3.8) 

3.3 Evaluation Function 

The Evaluation Funct ion is the inverse of the calibration function [6, 1st Edit.]. It is generated by 
applying the G to the calibration function. For a single analyte, this is G(F(x)), 
which is equal to G(E(y)). If the presumed calibration function is the actual calibration function (correct 
model), then G will be the inverse of F, and the operation G(F(x)) will return the actual concentration 
x .  Application of G to the observed response y together with the estimated parameters, leads to Z = G(y) 
for the estimated concentration. Thus, for the simplest (straight line) calibration function we obtain 

2 = (y - B ) / A  (5) 

The process is not quite so simple, of course, in terms of possible interference and losses and chemical 
matrix corrections. Error propagation, particularly if ey is non-normal, and for the non-linear parts of 
the transformation [denominator of Eq. 51, also is not always trivial. 

In the more general, multicomponent analytical process, the Evaluation Funct ion is the inverse of the 
multicomponent calibration function, given by G(F(x)), where, if the presumed multicomponent 
calibration model is correct, G is now the generalized inverse of F. The estimated concentration vector 
P is obtained by operating on the observed signal vector y. Thus, 

P = GO) (6) 

Under the best of circumstances, G will be a linear operator derived from the calibration function, as in 
linear least squares estimation. Uncertainties in the numbers, identities, and spectra of the component 
analytes -- as well as multicollinearity (spectrum similarities) -- can lead to severe difficulties in the 
inversion of Eq. 4. That is, the identity 

G F =  I (7) 

may not obtain, or the solution may not be numerically stable due to near singularity. For 
multicomponent analysis, therefore, the Evaluation Function plays a major role in determining the 
precision and accuracy of the CMP. 

3.4 Performance Characteristics Not Specifically Related to Precision and Accuracy 

A number of terms are necessary to describe the nature of a CMP, such as: analytical technique or 
method employed, range of "test portion" (sample) sizes to which it may be applied, interference 
tolerance and saturation effects, instrumentation employed, time of analysis, cost, number and identity 
of aiialytes simultaneously measurable, detector type and efficiency, resolution, chemical yield or 
recovery, etc. All such descriptors deserve attention, and several influence the attainable precision and 
accuracy, but they lie beyond the scope of the present document. 

3.5 Precision and Accuracy - Related Performance Characteristics 

"Precision" and "accuracy" have thus far been used as general, qualitative descriptors. Such usage is 
quite common and perhaps even appropriate; however, somewhat different, explicitly defined terms are 
given below. 

0 1995 IUPAC, Pure andApplied Chemistry67,1699-1723 



Nomenclature in evaluation of analytical methods 1705 

3.5.1 Measurement Resuk. The outcome of an analytical measurement (application of the CMP), or 
"value attributed to a measurand" [5]. This may be the result of direct observation, but more commonly 
it is given as a statistical estimate Z derived from a set of observations. The distribution of such 

) characterizes the CMP, in contrast to a particular estimate, which estimates (- 
constitutes an experimental result. Additional characteristics become evident if we represent Z as 
follows, 

' . .  

r e l  
R = t t e = t t A t G  = p t G  

L,J 

where: 

3.5.2 True Value (t). The value x that would result if the CMP were error-free. 

3.5.3 E~LQI (e). The difference between an observed (estimated) value and the true value; i.e., e = R 
- t (signed quantity). The total error generally has two components -- bias (A)  and random error (d), 
as indicated above. 

3.5.4 hmlhgmm @). The asymptotic value or population mean of the distribution that characterizes 
the measured quantity; the value that is approached as the number of observations approaches infinity. 
Modern statistical terminology labels this quantity the EQ&&QII * or -e, E(R). 

3.5.5 Ehs (A). The difference between the limiting mean and the true value; i.e., A = p - t (signed 
quantity). 

3.5.6 I&mhm&m (8). The difference between an observed value and the limiting mean; i.e., d = R 
' (cdf), which - p (signed quantity). The random error is governed by the cumulative d- 

in turn may be described by a specific mathematical function involving one or more parameters. (An 
example of a one parameter cdf is the Poisson distribution, which figures importantly in counting 
experiments.) Most commonly assumed is the normal or "Gaussian" distribution; this has two 
parameters: the mean p, and the standard deviation u. The random error is given by 6 = zu, where z 
is the value of the standard normal variate. 

* . . .  

3.5.7 Standard De viation (u). Dispersion parameter for the distribution. That is, CJ is the performance 
characteristic that reflects the root mean square random deviation of the observatioiis (results) about the 
limiting mean; positive square root of the variance. 

3.5.8 Variance (V = d).  More directly the cdf dispersion parameter is the variance, which is defined 
as the second moment about the mean. For certain non-normal distributions, higher moments may be 
given. 

3.5.9 . Taking Systematic Error to be all error components that are not random, we 
thus far would equate systematic error with the fixed bias of the CMP. Real CMPs, however, should 
be described by at least two additional quantities: 

-Blunders (b)  -- which we take as outright mistakes, and 
-kick of C o l d  (f(t))  -- drifts, fluctuations, etc. 

Systematic error is defined in the International Vocabulary of Basic and General Terms in Metrology 
as "a component of the error of measurement which, in the course of a number of measurements of the 
same measurand, remains constant or varies in a predictable way" [5]. A somewhat different perspective 
on measurement error, advanced by BIPM [12], is presented in the "IS0 Guide to the Expression of 
Uncertainty in Measurement" [ 131. This alternative view differs from the classical treatment of random 
and systematic sources of measurement uncertainty, and assigns "standard deviations" to all error 

0 1995 IUPAC, Pure and Applied Chemistry67, 1699-1723 
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components. According to the Guide, "it is assumed that, after correction, ... the expected value of the 
error arising from a systematic effect is zero." A new term, "standard uncertainty" is defined as the 
"uncertainty of the result of a measurement expressed as a standard deviation." Further, uncertainty 
components are classified as "type A" and "type B," reflecting those that may be evaluated by statistical 
methods, and those that are evaluated by other means. Note that the IS0 Guide treats uncertainties of 
measurement results, whereas this IUPAC document is concerned with performance characteristics of 
measurement processes. 

3.5.10 ~ ~ ~ U S K U  ' ' . A quantitative term to describe the (lack of) "precision" of a CMP; identical to the 
Standard Deviation [ l ,  141. 

3.5.11 Imxuaq. A quantitative term to describe the (lack of) accuracy of a CMP; comprises the 
imprecision and the bias. Inaccuracy must be viewed as a 2-component quantity (vector); imprecision 
and bias should never be combined to give a scalar measure for CMP inaccuracy. (One or the other 
component may, however, be negligible under certain circumstances.) [ 11. Inaccuracy should not be 
confused with uncertainty. Inaccuracy (imprecision, bias) is characteristic of the Measurement Process, 
whereas error and uncertainty are characteristics of a Result [3]. (The latter characteristic, of course, 
derives from the imprecision and bounds for bias of the CMP.) 

Note: The resultant bias and imprecision for the overall measurement process generally arise 
from several individual components, some of which act multiplicatively (eg, sensitivity), 
and some of which act additively (eg, the blank). (See section 3.8) 

3.6 Control and Testing of Assumptions 

etrology concerns itself with the control of measurements and their results which enter into 
examinations of the quality of materials, devices, ... measuring instruments ..." [ E l .  The testing of 
assumption validity for the Chemical Measurement Process, and thereby its results, necessarily 
constitutes a fundamental part of Quality Metrology. The control and assessment of imprecision and bias 
of the CMP -- ie, Quality Assurance [lG] -- is accomplished via assumption or Hypothesis Testing, 
where the null hypothesis is generally taken to be the absence of bias or of an added component of 
random error. 

I, 

3.6.1 h u m p  tion Test ing, The principal concepts involved in the statistical theory of hypothesis testing 
are presented in section 3.7 with reference to analyte detection. Testing for bias or added imprecision 
rests upon the same principles. That is, one must postulate null (H,) and alternative (HA) hypotheses, 
and then define a test statistic and critical value, based upon the acceptable level for the error of the first 
kind a -- also known as the significance le vel of the test. The power of the tesf. , which is described 
by its operatingrharacteristic [OC curve], is defined as the probability of correctly "accepting" the 
alternative hypothesis, given a. The power is thus 1-JI, whereJI is the probability of the error of the 
second kind [17]. 

. .  

Three points deserve emphasis: 1) "Acceptance" of an hypothesis, based on such statistical testing must 
not be taken literally. More correctly, one simply fails to reject the hypothesis in question. For 
example, non-detection of an analyte does not prove its absence. Put another way, "acceptance" [non- 
rejection] may reflect inadequate power [l-JI, given a ]  for the test and alternative hypothesis in question. 
2) Assumption (hypothesis) testing, itself, rests upon assumptions. The vast majority of statistical tests 
performed on the CMP and its results, for example, rely upon the assumptions of randomness and 
normality. Robust estimators and non-parametric or distribution-free tests may be employed when 
certain common assumptions may not be valid. 3) Assumption tests emerge in many facets of chemical 
measurement, ranging from analyte detection [section 3.71, to tests of randomness and independence, to 
tests of means (and bias) using z- or t-statistics, and variance (and model) tests using x2 or F statistics. 
Such test statistics play a central role in maintaining CMP quality both within and among laboratories; 
the resultant quality assurance is generally considered from the perspective of internal or external control 
[16, 18, 191. 

0 1995 IUPAC, Pure and Applied Chemisfry67.1699-I723 
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Notes 
1. Significance tests may be one-sided or two-sided. Testing for the presence of analyte 

in excess of the blank (detection test) is one- sided, since the true value of the net analyte 
concentration cannot be negative. Testing for the presence of bias, on the other hand, is 
generally two-sided. 

2. In many cases, such as testing for the presence of a particular analyte or the presence of 
systematic error, the null state cannot, in principle be attained; nor can the null hypothesis 
be proved. Recognizing the impossibility of attaining or proving absolute purity or 
absolute accuracy, it has been suggested that H, be displaced from zero to an incremental 
value consistent with the relevant metrological objectives. In such circumstances, 
attention would be shifted for example from the Detection Limit to the Discrimination 
kimd, where the null state would be that characterized by a small, acceptable analyte 
concentration [20]. 

3.6.2 internalControl. Within a given laboratory employing a given method of analysis, control of the 

having characteristics (composition) similar to the samples of interest. The control in this case is limited 
to control of the mean (absence of trends, etc.) and control of the variance -- ie, the two quantities that 
reflect the stability of the CMP. Control Char& are used to maintain a record of such internal control, 
where critical or control levels are derived from the mean and standard deviation (or ranges) of sets of 
observations. (At least four observations per set are advisable, to take advantage of the central limit 
theorem.) When k t i f i e d  Reference Mater ids (CRM) or other materials of known composition are 
available, one may estimate bias as well, within the uncertainty bounds of the CRM. The procedures 
for accomplishing internal (and external) control, especially from the perspective of the CRM, have been 
documented by the International Organization for Standardization [9]. 

CMP can be assessed in part by repeated measurements of samples, such as &faence Materials (RM), 

. .  3.6.2.1 Repeatab ility, as measured by the r e p e a t a b i l m d  de viation, is an accepted measure of 
internal variance. Its definition requires that "mutually independent test results [be] obtained with the 
same method on a test material in the same laboratory with the same equipment by the same operator 
within a short interval of time" [21]. Thus, repeatability reflects the best achievable internal precision, 
and realistic uncertainty estimates must take into account possible variations in the constrained factors, 
as well as possible sources of uncompensated bias. Note that a false level of precision (repeatability) 
ensues if the observations are not truly mutually independent. Successive readings from an instrument, 
for example, do not give a valid measure of repeatability for the CMP; rather, they are solely an 
indication of the instrumental repeatability. (See section 4.1) 

3.6.3 Exterllal. Control may be assessed from without via "blind" replicates (for CMP stability) 
or "blind" CRMs (for CMP accuracy), submitted without foreknowledge of the measuring laboratory. 
A common failure of such external control is that the test samples are not totally blind. That is, the 
appearance or scheduling of the external samples may be sufficient to alert the internal analyst (possibly 
only subconsciously) to apply extra care, or even lack thereof. Collaborative tests comprise the other 
form of external control, where a number of (presumably) equivalent laboratories assay test portions from 
the same homogeneous material. IS0 Guide 33 [9] treats CMP assessment via an interlaboratory 
program; and IS0 Guide 35 [8] discusses this approach for the certification of CRMs. 

. . .  . . .  3.6.3.1 Reprodu- , as measured by the qnxiucibillty standard de viation, is the external 
complement to repeatability. Conditions here are defined such that "test results are obtained with the 
same method on a test material in different laboratories with different equipment by different operators" 
[21]. Thus, if the method in question is unbiased, reproducibility meets the objective of varying all 
factors so that the total error becomes random and thereby experimentally (statistically) estimable. In 
the International Vocabulary of Basic and General Terms in Metrology [5], the definition appears a little 
more flexible, in that a list of six types of changing factors is presented (including the method of 
measurement), accompanied by the notes that a specification of conditions actually subject to change 
should be indicated, and that the dispersion of results would serve as the quantitative measure of 
reproducibility. 

0 1995 IUPAC, Pure and Applied Chemistry67, 1699-1723 



1708 COMMISSION ON ANALYTICAL NOMENCLATURE 

Control, internal or external, need not be limited to measurement stability and accuracy. Control or 
assessment of assumed physical (or functional) models as well as random error models (cumulative 
distribution functions, autocovariaiice functions) may also be addressed. Both of these elements of 
modern multivariable and niulticomponent measurements are leading to the emergence of a data analogue 
of Standard (Certified) Reference Materials (SRM), i.e., Slm- (STD) [lo, 22, 231. Such 
data are supplied, for example, as a regular part of the IAEA Analytical Quality Control Services 
program (gamma ray spectra) [22] ,  STD, which represent fully characterized simulations of real 
analytical signals, have the great merit of providing quality assessment for the evaluation step of the 
CMP -- the step that is becoming at the same time more common and more complex and more remote 
from the direct control of the operator, through the advent of sophisticated computational and 
instrumentation modules. See Fig. 1 for a graphical representation of the SRM and STD control points 
for the Chemical Measurement Process. 

3.7 Detection and Quantification Capabilities 

Among the most important Performance Characteristics of the Chemical Measurement Process (CMP) 
are those that can serve as measures of the underlying detection and quantification capabilities. These 
are essential for applications in research, international commerce, health, and safety. Such measures are 
important for planning measurements, and for selecting or developing CMPs that can meet specified 
needs, such as the detection or quantification of a dangerous or regulated level of a toxic substance. 

Equations 1-6 provide the basis for our considering the meaning of minimum detectable and minimum 
quantifiable amounts (signals, concentrations) in Analytical Chemistry [24]. In each case, the 
determining factor is the distribution function of the estimated quantity (estimated net signal 3, 
concentration or amount a). If normality can be assumed, it is sufficient to know the standard deviation 
of the estimated quantity as a function of S (or x ) .  Detection limits (minimum detectable amounts) are 
based on the theory of hypothesis testing and the probabilities of false positives a, and false negatives 
j3. Quantification limits are defined in terms of a specified value for the relative standard deviation. It 
is important to emphasize that both types of limits are CMP Performance Characteristics, associated with 
underlying true values of the quantity of interest; they are not associated with any particular outcome 
or result. The dckction decision , on the other hand, is result-specific; it is made by comparing the 
experimental result with the Critical Value, which is the minimum significant estimated value of the 
quantity of interest. 

. .  

3.7.1 Termlnologv . Unfortunately, a host of terms have been used within the chemical community to 
describe detection and quantification capabilities. Perhaps the most widely used is "detection limit" (or 
"limit of detection") as an indicator of the minimum detectable analyte net signal, amount, or 
concentration. However, because the distinction between the minimum significant estimated 
concentration and the minimum detectable true concentration has not been universally appreciated, the 
same term and numerical value has been applied by some, perhaps unwittingly, in both contexts. Despite 
this, the term "Detection Limit" is widely understood and quoted by most chemists as a measure of the 
inherent detection capability. (For more on the terminological and conceptual history that has beset 
Detection in Analytical Chemistry, see Currie [20] and Note-3 in Section 3.7.3.2.) 

With the goal of harmonizing international terminology in this area, scientists from I S 0  and IUPAC met 
in July 1993 [25]. The meeting resulted in full consensus on detection concepts and default parameter 
choices, and acceptable agreement on terminology. As an outgrowth of that meeting, we recommend 
the following terms and alternates. (Concepts and formulas will be presented in following sections.) 
For distinguishing a chemical signal from background noise -- ie., for making the Detection Decision: 
the m i c a 1  Value (L,) of the appropriate chemical variable (estimated net signal, concentration, or 
amount); alternate: the -1 T e vel. As the measure of the inherent Detection Capability of a CMP: 
the Minimum Detectable (true) Valun (L,) of the appropriate chemical variable; alternate: the Detection 
Limit. As the measure of the inherent Quantification Capability of a CMP, the Mjuimum Ouuhfubk 
(-. (15,); alternate: the ' ' . Many other terms such as "Decision Criterion" 
for L,, "Identification Limit" for L,, and "Measurement Limit" for L,, appear in the chemical literature. 

. .  
. .  * 
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In the interest of uniform international nomenclature, however, only the terms and alternates defined 
above are recommended. 

Note: For presentation of the defining relations, we use L as the generic symbol for the quantity 
of interest. This is replaced by S when treating net analyte signals, and x ,  when treating 
analyte concentrations or amounts. Thus, Lo L, and L, may represent So S, and S,, or 
xo x, and x,, as appropriate. 

, Just as with other Performance Characteristics, L, and 3.7.2 Specification of the Measurement Process 
L, cannot be specified in the absence of a fully defined measurement process, including such matters 
as types and levels of interference as well as the data reduction algorithm. "Interference free detection 
limits" and "Instrument detection limits", for example, are perfectly valid within their respective domains; 
but if detection or quantification characteristics are sought for a more complex chemical measurement 
process, involving for example sampling, analyte separation and purification, and interference and matrix 
effects, then it is mandatory that all these factors be considered in deriving values for L, and L, for that 
process. Otherwise the actual performance of the CMP (detection, quantification capabilities) may fall 
far short of the requisite performance. 

. .  . 

3.7.3 Detection -- Fund- ' . The W t i c a l  theory of Hypothesis Test irg, introduced in 
Section 3.6.1, serves as the framework for our treatment of Detection in Analytical Chemistry. 
Following this theory we consider two kinds of errors (really erroneous decisions): the error of the first 
kind ("type I," false positive), accepting the "alternative hypothesis" (analyte present) when that is wrong; 
and the error of the second kind ("type 11," false negative), accepting the "null hypothesis" (analyte 
absent) when that is wrong. The probability of the type I error is indicated by a; the probability for the 
type I1 error, by p. Default values recommended by IUPAC for a and j3 are 0.05, each. These 
probabilities are directly linked with the one-sided tails of the distributions of the estimated quantities 
(3, a). 

M$ 
Societal Loss 

A graphical representation of these concepts is 
given in Fig. 2, where the "driving force" in this 

release of specific chemical precursors of 

to earthquakes of magnitude L, and above. Thus 
L, is the "requisite limit" or maximum acceptable 

hypothetical example is the ability to detect the 

earthquakes (e.g., radon) at levels corresponding 

limit for undetected earthquakes; this is driven, in 

10 - 
1-  

Acceptable 0.1 _ - -  - - - - - -  - - 

0.01 - 
turn, by a maximum acceptable loss to society. 
(Derivation of L, values for sociotechnical 
problems, of course, is far more complex than the 
subject of this report!) The lower part of the 
figure shows the minimum detectable value for 

L,, and its relation to the probability density 
functions (pdf) at L = 0 and at L = L, together 
with a and 0, and the decision point (Critical 
Value) L,. The figure has been purposely 
constructed to illustrate heteroscedasticity -- in 
this case, variance increasing with signal level, 

the chemical precursor L,, that must not exceed Pdf 

I 

and unequal a and p. The- point of  the latter 
construct is that, although 0.05 is the Fig. 2 Detection: needs and capabilities. Top portion 
recommended default value for these parameters, 
particular circumstances may dictate more 
stringent control of the one or the other. 
Instructive implicit issues in this example are that 

shows the requisite limit L, bottom shows detection 
capability &. (Adapted from Ref. 20) 
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(1) a major factor governing the detection capability could be the natural variation of the radon 
background (blank variance) in the environment sampled, and (2) a calibration factor or function is 
needed in order to couple the two abscissae in the diagram. In principle, the response of a sensing 
instrument could be calibrated directly to the Richter scale (earthquake magnitude); alternatively, there 
could be a two-stage calibration: response-radon concentration, and concentration-Richter scale. 

A final point is that, with the exception of certain "distribution-free" techniques, Detection Limits cannot 
be derived in the absence of known (or assumed) distributions. As with all Performance Characteristics, 
the parameters used to compute L,  and L, should be estimated from measurements in the region of 
interest -- in this case in the range between the blank and the detection limit. Similarly, experimental 
verification of computed detection limits is highly recommended. 

Note: The single, most important application of the detection limit is forplanning (CMP design 
or selection). It allows one to judge whether the CMP under consideration is adequate 
for the detection requirements. This is in sharp contrast to the application of the critical 
value for decision making, given the result of a measurement. The most serious pitfall 
is inadequate attention to the magnitude and variability of the overall blank, which may 
lead to severe underestimation of the detection limit. 

(L,). The decision "detected" or "not detected" is made by comparison of 3.7.3.1 Detecti- 
the estimated quantity (i) with the W c a l  Value (L,) of the respective distribution, such that the 
probability of exceedingLC is no greater than a if analyte is absent (L = 0, null hypothesis). The Critical 
Value is thus the minimum significant value of an estimated net signal or concentration, applied as a 
discriminator against background noise. This corresponds to a l-sided significance test. The above 
definition of L,  can be expressed as follows, 

* .  

Pr (i>~, I L=O) s a (9) 

Generally the equation is stated as an equality, but the inequality is given to accommodate discrete 
distributions, such as the Poisson, where not all values of a are possible. If i is normally distributed 
with known variance, Eq. 9 reduces to the following simple expression, 

L, = Z1-a a, 

where z ~ - ~  (or zp) represents the (l-a)th percentage point or critical value of the standard normal 
variable, and a, is the standard deviation of the estimated quantity (net signal or concentration) under 
the null hypothesis (true value = 0). Taking the default value for a (0.05), L,  = 1.645 a,. 

Note that Eq. 9, not Eq. 10, is the defining equation for L,, and the result (1.645 a,) applies only if the 
data are normal with known variance and a is set equal to its default value. If a, is estimated by so, 
based on v degrees of freedom, z ~ - ~  must be replaced by Student's-t. That is, 

L,  = 4-G" so 

For a = 0.05 and 4 degrees of freedom, for example, L,  would be equal to 2.132 so. 

Notes: 
1. Some measurement systems impose an artificial hardware or software threshold (defacto 

L,) to discriminate against small signals. In such cases statistical significance is 
problematic -- a may be quite small and perhaps unknown, but equations 12 and 13 
below can still be applied to compute L,, given L,  and@. The impact of such a threshold 
can be profound, severely eroding the inherent detection capability of the system [26]. 

2. A result falling below L,, triggering the decision "not detected" should not be construed 
as demonstrating analyte absence. (See section 3.6.1.) Reporting such a result as "zero" 
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or as “4,” is not recommended; the estimated value (net signal, concentration) and its 
uncertainty should always be reported. 

3.7.3.2 Minimum Detectable Value: D e t e c t i m h m l  ’ * (L,). The Minimum Detectable Value of the net 
signal (or concentration) is that value (L,) for which the false negative error is 8, given Lc (or a). It is 
the true net signal (or concentration) for which the probability that the estimated value i does not exceed 
L,  is@. The definition of L, can thus be expressed as 

For normal data having known variance structure, this yields, 

L, = Lc t 21-p 0, 

For the special situation where the variance is constant between L = 0 and L = L D ,  the right side of Eq. 
13 reduces to (z,-atz,-p)ao; if in addition a andB are equal, this gives 2zl-,uO which equals Z,. Taking 
the default values for a and Ji’ (0.05), this equals 3.29 a,. If L,  employs an estimate so based on v 
degrees of freedom (Eq. l l ) ,  then (zl-atzl-p) must be replaced by 6,,, the non-centrality parameter 
of the non-central-t distribution. For a = j3, this parameter is approximately equal to 2t and the 
appropriate expression (for constant variance) is, 

For 4 degrees of freedom, for example, the use of 2t would give L, = 4.26 a,. (The actual value for 6 
in this case is 4.067.) Note that a, must be used in Eq. 14. If only an estimate so is available, that 
means that the minimum detectable value is uncertain by the ratio (ah). Using the techniques of section 
3.8.6, confidence limits may then be calculated for L,. (A 95% upper limit for L,, based on an 
observed so with 4 degrees of freedom, would be {4.07/(Jo.178)} so or 9.65 so.) 

Notes: 
1. When v is large, 2t is an excellent approximation for 6. For v 2 25, with a = Jl = 0.05, 

the difference is no more than 1 %. For fewer degrees of freedom, a very simple 
correction factor for 2t, 4v/(4vt1), which takes into account the bias in s, gives values 
that are within 1 % of 6 for v 2 5.  For the above example where v = 4, 6 would be 
approximated as 2(2.132)(16/17) which equals 4.013. 

2. L, is defined by Eq. 12 in terms of the distribution of i when L = L,, the probability of 
the type-I1 error j3, and L,, with Lc being defined (Eq. 9) in terms of the distribution of 
i when L = 0, and the probability of the type-I error a. When certain conditions are 
satisfied, L, can be expressed as the product of a specific coefficient and the standard 
deviation of the blank, such as 3.29 a,, when the uncertainty in the mean (expected) value 
of the blank is negligible, a a n d 8  each equal 0.05, and i is normally distributed with 
known, constant variance. L, is not defined, however, simply as a fixed coefficient (2, 
3, 6, etc.) times the standard deviation of a pure solution background. To do so can be 
extremely misleading. The correct expression must be derived from the proper defining 
equations (Eq. 9 and 12)) and it must take into account degrees of freedom, a andfi, and 
the distribution of i as influenced by such factors as analyte concentration, matrix effects, 
and interference. (See also section 3.7.2.) 

3. The question of detection has been treated extensively by H. Kaiser for spectrochemical 
analysis. In the earlier editions of the “Orange Book” [6] and related publications of 
Kaiser on spectrochemical analysis, the use of 3sB is recommended as the “limit of 
detection” [translation of Nuchweisgrenze]. Although originally intended to serve as a 
measure of the detection capability, this quantity was then used as the ”decision criterion” 
to distinguish an estimated signal from the background noise. Such a definition, which 
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in effect sets L,  and L, each equal to 3s, corresponds for a normal distribution (large V) 

to a type-I error probability of ca. 0.15 % but a type-I1 error probability of 50 % ! 
Kaiser's "limit of guarantee for purity" [Gr,; Ref. 301 rectifies the imbalance, but this 
quantity -- as a measure of detectability, the CMP performance characteristic, is scarcely 
ever used, and has not appeared in the "Orange Book." Further discussion of the 
confusion that has resulted from this earlier terminology and support for identifiting the 
"detection limit" with the CMP performance characteristic L, may be found in several 
publications and textbooks, including the Standard Practice of ASTM [27] and books by 
Liteanu and Rita [28, ch. 71, Massart, et al. [31], and Currie [20]. 

3.7.4 s@l&bmm ' (So S,). In many cases the smallest signal S, that can be reliably distinguished 
from the blank, given the critical level S,, is desired, as in the operation of radiation monitors. 
Assuming normality and knowledge of a, simple expressions can be given for the two quantities involved 
in Signal Detection. Eq. 10 takes the following form for the Critical Value, 

S, = zl-, U, -> 1.645 U, (15) 

where the expression to the right of the arrow results for a = 0.05. From Eq. 3 the estimated net signal 
3 equals y - B ,  and its variance is 

v;= vy t v,. -> v, t v,.= v, (16) 

The quantity to the right of the arrow is a:, the variance of the estimated net signal when the true value 
S is zero. If the variance of B is negligible, then a, = a,, the standard deviation of the Blank. If B is 
estimated in a "paired" experiment -- i.e., V; = V,, then a, = u,V2. Note that a, = a,, and a, = a,V2, 
are limiting cases. More generally, a, = u,Vq, where q = 1 t (V;/V,). Thus, q reflects different numbers 
of replicates, or, for particle or ion counting, different counting times for "sample" vs blank 
measurements. (See section 3.8.8 for further discussion of the Blank.) 

The Minimum Detectable Signal S, derives similarly from Eq. 13, that is, 

where a,' represents the variance of 3 when S = S,. For the special case where the variance is constant 
between S = 0 and S = S,, and a = ~3 = 0.05, the Minimum Detectable Signal S, becomes 2S, = 3.29 
a,, or (3.29V2)aB = 4.65 a, for paired observations. The treatment using an estimated variance, s: and 
Student's-t follows that given above in Section 3.7.3. 

The above result is not correct for S, if the variance depends on the magnitude of the signal. A case 
in point is the counting of particles or ions in accelerators or mass spectrometers, where the number of 
counts accumulated follows the Poisson distribution, for which the variance equals the expected number 
of counts. If the mean value of the background is known precisely, for example, a: = a,", which in turn 
equals the expected number of background counts B.  This leads to approximate expressions of 1.645 
VB, and 2.71 t 3.29 VB for S, and S, (units of counts), respectively, for counting experiments with "well 
known" blanks [24]. In more complicated cases where net signals are estimated in the presence of 
chromatographic or spectroscopic baselines, or where they must be deconvolved from overlapping peaks, 
the limiting standard deviations (a, and a,) must be estimated by the same procedures used to calculate 
the standard deviation of the estimated (net) signal of interest. Examples can be found in Ref. 20. (See 
also sections 3.7.5 and 3.7.6.) 

Note: The result for counting data given above is based on the normal approximation for the 
Poisson distribution. Rigorous treatment of discrete and other non-normal distributions, 
which is beyond the scope of this document, requires use of the actual distribution 
together with the defining relations Eq. 9 and Eq. 12. 
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3.7.5 (xo x,). For the special category of "direct reading" instrument systems, 
the response is given directly in units of concentration (or amount). In this case, the distinction between 
the signal domain and the concentration domain vanishes, and the treatment in the preceding section 
applies, with y, ev B, and S already expressed in concentration units. As before, the development of 
particular values for the critical level and detection limit requires distributional assumptions, such as 
normality, which should be tested. More generally, the transformation to the minimum detectable 
concentration (amount) involves one or more multiplicative (or divisive) factors, each of which may be 
subject to error. Thus, one divides the net signal by a theoretically or experimentally determined 
sensitivity factor or efficiency to convert a gamma ray counting rate into an emission rate; further 
division by a branching ratio may be needed to determine a radionuclide decay rate; additional correction 
factors may be needed to treat interference, matrix effects, and chemical recovery; and factors taking into 
account neutron monitor responses and irradiation and decay times are generally needed in activation 
analysis. Collectively, these factors comprise the sensitivity A which relates the net signal to the 
physical or chemical quantity of interest x, as indicated in Eq. 5. We consider two cases. 

* 

. .  3.7.5.1 (e; negligible or constant). When the uncertainty about the 
calibration function F(x) and its parameters is negligible, the minimum detectable concentration x, can 
be calculated as F-'(y,,), where y, = B t S,. Problems arise only when the calibration function is not 
monotonic; and even if it is monotonic, some iteration may be needed if F(x) is not linear in x. In the 
linear case where F(x) = B t Ax, and the uncertainty of the sensitivity, but not necessarily that of the 
blank, is negligible, the transformation from the minimum detectable signal to the minimum detectable 
concentration is simply 

For normal data with constant, known variance, and a = 8, the Minimum Detectable Concentration x, 
is thus =,/A. Taking the default value for a andj?, this becomes (3.29 a,)/A, where a, is the standard 
deviation of 3 when S = 0. For paired observations this is equivalent to (4.65 aB)/A, where a, is the 
standard deviation of the blank. Since only the numerator in Eq. 18 is subject to random error, the 
detection test will still be made using S,. When variance is estimated as s2, Student's-t (central and 
non-central) must be used as shown section 3.7.3. 

When the assumed value of the sensitivity A is fixed, but biased -- as when an independent estimate 
of the slope from a single calibration operation, or a calibration material or a theoretical estimate having 
non-negligible error, is repeatedly used -- the calculated detection limit will be correspondingly biased. 
Bounds for the bias inA can be applied to compute bounds for the true detection limit. Since the biased 
estimate of '4 is fixed, it cannot contribute to the variance of f 

Note: Repeated use of a fixed estimate for the blank is not recommended, unless V; << VB, as that may 
introduce a systematic error comparable to the Detection Limit, itself. This is of fundamental 
importance in the common situation, especially in trace analysis, where the sensitivity estimate 
is derived from instrument calibration, but where the blank and its variance depend primarily on 
non-instrumental parts of the CMP including sample preparation and even sampling. (See 
section 3.8.8). 

3.7.5.2 (ej random). When the error i n a  is random, then its effect on 
the distribution o f f  must be taken into account, along with random error in y and B.  This is the case, 
for example, where sensitivity (slope) estimation is repeated with each application of the measurement 
process. For the common situation where x is estimated by (y-d)/a [Eq. 51, the minimum detectable 
concentration may be calculated from the defining equations 9 and 12, and their normal equivalents, 
using the Taylor expansion for the variance of 2 at the detection limit x,: V;.(x=xD) = (v, t xD2V," t 
2,VM)/A2, with V, as given in Eq. 16. For the heteroscedastic case (5 varying with concentration), V ,  
must be replaced by (V,(x,) tV;) in the above expression, and weights used [26]. 
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The results for constant V y  and a = B, presented in a slightly different form in Ref. 3, are 

s, = f l - 4 2 0  

where: 

I = 1 - [ t l - , , (~ i /A) ]~  

When B and A are estimated from the same calibration data set, the estimates will be negatively 
correlated with r(B,A) = -Z/xq, xq being the quadratic mean [3 ] .  The ratio HI may then range from 
slightly less than one to very much greater, depending on the calibration design and the magnitude of 
uy. The effect of the factor I in particular, can cause xDAto differ substantially from 2t,-,,uJA. The 
extreme occurs when the relative standard deviation of A approaches then x, is unbounded. 
When B and A are estimated independently, then r(B,A) = 0, and K = 1. If the relative standard 
deviation of a is negligible compared to l/tl-qv, then K and I both approach unity, and x, reduces to 
the form given in Eq. 18. 

A note of caution: If the parameters used in equations 19 and 20 derive from a calibration operation that 
fails to encompass the entire CMP, the resulting values for S, and x, are likely to be much too small. 
Such would be the case, for example, if the response variance and that of the estimated intercept based 
on instrument calibration data alone were taken as representative of the total CMP, which may have 
major response and blank variations associated with reagents and the sample preparation environment. 

Notes: 
1. When an estimated value a is used in Eq. 20, it gives a rigorous expression for the 

maximum (non-detection) upper limit for a particular realization of the calibration curve. 
(This result derives from the distribution ofy-@-ax which is normal with mean zero and 
variance V,tV;tx2V't2d',.) Since a is a random variable, this means for the 
measurement process as a whole that there is a distribution of limits ~,(a) corresponding 
to the distribution of ak. When A is used in Eq. 20, the resulting x, can be shown to be 
approximately equal to the median value of the distribution of the maximum upper limits. 

2. An alternative approach for establishing x,, developed by Liteanu and R i b  [28],  is based 
on empirical frequencies for the type I1 error as a function x.  Using a regression- 
interpolation technique these authors obtain a direct interval estimate for X, corresponding 
to jJ' = 0.05, given x,. This "frequentometric" technique for estimating detection limits 
is sample intensive, but it has the advantage that, since it operates directly on the 
empirical 2 distribution, it can be free from distributional or calibration shape 
assumptions, apart from monotonicity. For the special case where 8 a n d 2  are distributed 
normally, a rigorous asymptotic solution to the problem has been developed, based on the 
theoretical distribution of 2, which is not normal [29].  

3.7.6 MulticomDonent Detect ian. When a sensing instrument responds simultaneously to several 
analytes, one is faced with the problem of multicomponent detection and analysis. This is a very 
important situation in chemical analysis, having many facets and a large literature, including such topics 
as "errors-in-variables-regression" and "multivariate calibration"; but only a brief descriptive outline 
will be offered here. For the simplest case, where blanks and sensitivities are known and signals 
additive, S can be written as the summation of responses of the individual chemical components -- i.e., 
Si = ZSij = Z4flj, where the summation index-j is the chemical component index, and i ,  a time index 
(chromatography, decay curves), or an energy or mass index (optical, mass spectrometry). In order to 
obtain a solution, S must be a vector with at least as many elements Si as there are unknown chemical 
components. Two approaches are common: (1) When the "peak-baseline" situation obtains, as in certain 
spectroscopies and chromatography, for each non-overlapping peak, the sum U x  can be partitioned into 
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a one component "peak" and a smooth (constant, linear) baseline composed of all other (interfering) 
components. This is analogous to Eq. 2, and for each such peak, it can be treated as a pseudo one 
component problem. (2) In the absence of such a partition, the full matrix equation, S = Ax, must be 
treated, with xkc and xm computed for component-k, given the complete sensitivity matrix A and 
concentrations of all other (interfering) components. These quantities can be calculated by iteratively 
computing, from the Weighted Least Squares covariance matrix, the variance of component-k as a 
function of its concentration, keeping all interfering components constant, and using the defining 
equations 9 and 12, or their normal forms, equations 10 and 13. Further discussion can be found Ref. 
20 and references therein. 

An additional topic of some importance for multicomponent analysis is the development of optimal 
designs and measurement strategies for minimizing multicomponent detection limits. A key element for 
many of these approaches is the selection of measurement variable values (selected sampling times, 
optical wavelengths, ion masses, etc.) that produce a sensitivity matrix A satisfying certain optimality 
criteria. Pioneering work in this field was done by Kaiser [30]; a review of more recent advances is 
given by Massart et a1 [31, ch 8.1. 

. .  . ' 
' (L,). Quantification limits are performance 3.7.7 M i n i m u m a b l e  Value: 

characteristics that mark the ability of a CMP to adequately "quantify" an analyte. Like detection limits, 
quantification limits are vital for the planning phase of chemical analysis; they serve as benchmarks that 
indicate whether the CMP can adequately meet the measurement needs. 

. .  

The ability to quantify is generally expressed in terms of the signal or analyte (true) value that will 
produce estimates having a specified relative standard deviation (RSD), commonly 10 %. That is, 

LQ = kQ UQ 

where LQ is the Quantification Limit, U, is the standard deviation at that point, and k, is the multiplier 
whose reciprocal equals the selected quantifying RSD. The IZIPAC default value fork, is 10. As with 

' ' (S,) and malyte ( a r m u t  or conceniutb) detection limits, the net signal qua- 
on h& (xQ) derive from the relations in equations 1-5, and the variance structure of the 

measurement process. If the sensitivity '4 is known, then X ,  = S$A; if an estimatea is used computing 
2, then its variance must be considered in derivingx,. (See Note-1, below.) Just as with the case of S, 
and x,, uncertainties in assumed values for u and A are reflected in uncertainties in the corresponding 
Quantification limits. 

* .  . 

If a is known and constant, then a, in Eq. 21 can be replaced by a,, since the standard deviation of the 
estimated quantity is independent of concentration. Using the default value for k,, we then have 

In this case, the quantification limit is just 3.04 times the detection limit, given normality and a = j3 = 
0.05. 

Notes: 
1. In analogy with x,, the existence of x, is determined by the RSD of a. In this case the 

limiting condition for finite xQ is RSD(2) c l/k. If x is estimated with Eq. 5,  and 8 and 
a are independent, and u($ is constant with value a,, then X, = (k~JA)/[l-(ku,/A)~]~, 
where (kuJA) is the limiting result when the random error in 

One frequently finds in the chemical literature the term "Determination Limit." Use of 
this term is not recommended, because of ambiguity. It is sometimes employed in the 
sense of the critical level, for making detection decisions; sometimes, as the detection 
limit; and still others, as the quantification limit. 

is negligible.] 

2. 
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. .  3.7.8 Heteroscedastlcltv . If the variance of the estimated quantity is not constant, then its variation must 
be taken into account in computing detection and quantification limits. The critical level is unaffected, 
since it reflects the variance of the null signal only. Two types of a variation are common in chemical 
and physical metrology: (a) d (variance) proportionate to response, as with shot noise and Poisson 
counting processes; and (b) a (standard deviation) increasing in a linear fashion. Detailed treatment of 
this issue is beyond the scope of this document, but further information may be found in Ref. 20. To 
illustrate, given normality, negligible uncertainty in the mean value of the blank, and a(L) increasing with 
a constant slope (daldL) of 0.04 -- equivalent to an asymptotic relative standard deviation (RSD) of 4 
%, we find the following, 

L, = 1.645 U, (23) 

L, = L, t 1.645 a,, with a, = a, t 0.04 L, (24) 

LQ = 10 uQ, with UQ = 0, t 0.04 LQ (25) 

Solutions for equations 24 and 25 are L, = 3.52 a,, and LQ = 16.67 a,, respectively. Thus, with a linear 
relation for o(L), with intercept a, and a 4 % asymptotic RSD, the ratio of the quantification limit to 
the detection limit is increased from 3.04 to 4.73. 

If u increases too sharply, L, andlor LQ may not be attainable for the CMP in question. This problem 
may be attacked through replication, giving u reduction by l N n ,  but caution should be exercised since 
unsuspected systematic error will not be correspondingly reduced! 

3.8 Estimation 

Much of the foregoing discussion treats Performance Characteristics as though they were known without 
error. In fact, apart from definition, this can never obtain. Let US consider the significance (not just 
statistical) of this limitation for four of the more important CMP characteristics: bias, imprecision 
(variance, standard deviation), sensitivity, and the blank. 

3.8.1 (A or A). Estimation of CMP characteristics such as bias and imprecision carries 
two dichotomies: (1) statistical estimation [circumflex] vs "scientific" (judgment) estimation [tilde]; and 
(2) "internal" estimation, via propagated contributions of each constituent step of the CMP vs "external" 
estimation via intercomparison of the overall CMP with an appropriate external standard (or laboratory, 
or definitive method). In the case of bias, it would seem unlikely that the CMP would be even 
coiisidered for use if the internally estimated bias were non-negligible. An external bias estimate 
(statistical) could be formed ex post fucfo, however, during the evaluation of a CMP in comparison to 
a known standard. A statistically and practically significant bias estimate generally would lead either 
to rejection of the CMP altogether, or exposure and correction of the source(s) of bias. 

h r J  ' 

Two matters concerning CMP bias are worth noting: (1) The detection limit for bias is intimately tied 
to the imprecision of the measurement process; bias much smaller than the repeatability-a is quite 
difficult to detect [20]. (2) "Correction" or adjustment of bias of a complex CMP based on an observed 
discrepancy with a natural matrix CRM can be a very tenuous process, unless or until the cause of the 
discrepancy is thoroughly understood. 

3.8.2 Bias U n c e r W y  Bias Boun& (AM). More commonly, our concern is with the maximum (absolute 
value) uncorrected bias. Such a quantity is derived from the (scientifically or statistically) estimated bias 
together with the uncertainty of that estimate. If a statistical estimate is involved, and if we know the 
cdf and its parameters@), we can form a confidence interval and upper limit, just as in the case of 
analytical results [3]. Scientific, or inferred, bias bounds are much more difficult to generate, for they 
require skilled and exhaustive scientific evaluation of the entire structure of the CMP. This should never 
be omitted; but, unfortunately it is rarely done. 
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3.8.3 Estimated Var W (s2 = 8 = 4. Variance is estimated by the sum of squares of the residuals 
(deviations of the observed from the estimated or "fitted" values) divided by the n u m b ?  
freedom Y, which equals the number of observations n minus the number of estimated parameters. Thus, 
for a simple set of observations 

where X = the estimated (arithmetic) mean 

For a fitted (straight-line) calibration curve, 

s2 = Z(y, - jp/(n-2) (27) 

Note that although the standard deviation equals the square root of the variance d, the square root of 
the estimated variance s2 yields a biased estimate for the standard deviation. An approximate correction 
is given by multiplying s by [ltl/(4v)] [32]. 

3.8.4 P r o p a d o n  of "Error" fVari& . An "internal" estimate for the overall variance of a CMP can 
be constructed from the variances of the contributing elements or steps of the CMP and the functional 
manner in which they are linked. If the individual cdfs are normal and the links are additive (or 
subtractive), normality is preserved in the overall process. An illustration is the subtraction of an 
estimated blank from the observed response to get the net signal; in this case variances add. If the 
parameters for the individual steps are linked multiplicatively, as in the correction of the net signal for 
the estimated chemical yield, relative variances add. (In this case, normality is only asymptotic, as the 
relative variances become sufficiently small.) 

More complicated relations can be treated with the Taylor expansion, suitably adapted for variances: 

where f is the function whose variance is to be determined, and 
the xj are the individual parameters whose variances are known. 

3.8.5 Estimated Poisson V a w c e  ' ("counting statistics"). For counting experiments, if there are no 
extraneous sources of variance, the distribution of counts is Poisson; hence the variance d equals the 
mean p. Except for the case of relatively few counts, using the observed number of counts as an 
estimate of the variance is quite adequate. 

3.8.6 
x2/v. An 95% interval estimate for this ratio is therefore given by 

. If the observations are distributed normally, s2/d is distributed as 

A useful approximation for rapidly estimating the uncertainty in s/u is Urn. This is roughly equivalent 
to the standard deviation of the ratio s/u for large v .  Thus, about 200 degrees of freedom are required 
before the relative standard uncertainty in u is decreased to about 5 %. 

Note: Eq. 29 can be used to derive approximate confidence intervals for the relative standard 
deviation (RSD), given the observed ratio sE, without taking into account the uncertainty 
of X; the approximation improves with increasing degrees of freedom, and decreasing 
RSD. A theoretical analysis of this and other approximations, in comparison to the exact 
expression which derives from the non-central t distribution has been given by Vangel 
[33]. This has special relevance for the Quantification Limit, since the definition of L, 
is based on a prescribed value for the RSD. 
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3.8.7 * 'v' (a). The slope (sensitivity) and intercept of the calibration curve are 
generally estimated using Ordinary Least Squares [3]. Weighted Least Squares may be justified if at 
least the relative statistical weights are reliably known (or can be assumed), where the weights are taken 
as inverse variances. Although the intercept of an instrument calibration curve may give some useful 
information on the magnitude of the blank, for low-level measurements that may be severely affected 
by contamination, it is advisable to make direct estimates of the components of the blank and their 
variability. 

(Least Squares Fitting). When a functional, as Note: Comments on Parameter Estlmatlan 
opposed to a statistical (structural) relation exists between variables -- as in the case of 
a calibration curve -- the terms "Regression" and Torrelation" are inappropriate. The 
quality of the fit should be assessed by appropriate test statistics, such as F, xz, the MSSD 
(Mean Squared Successive Deviation), etc. In some cases, where the individual data are 
quite precise, such test statistics can show a "fit" to be very poor, even though the linear 
correlation coefficient is almost unity. A related situation where Correlation is 
appropriately used is for the (statistical) relation between parameters (slope, intercept) 
estimated from the same data set. This statistical relation is commonly displayed in the 
form of a mnfidence dlipx. (See Natrella [17], for more on statistical vs functional 
relationships.) 

. .  

3.8.8 Th&la& (B) .  The blank is one of the most crucial quantities in trace analysis, especially in the 
region of the Detection Limit. In fact, as shown above, the distribution and standard deviation of the 
blank are intrinsic to calculating the Detection Limit of any CMP. Standard deviations are difficult to 
estimate with any precision (ca. 50 observations required for 10 % RSD for the Standard Deviation). 
Distributions (cdfs) are harder! It follows that extreme care must be given to the minimization and 
estimation of realistic blanks for the over-all CMP, and that an adequate number of full scale blanks 
must be assayed, to generate some confidence in the nature of the blank distribution and some precision 
in the blank RSD. 

Note: An imprecise estimate for the Blank standard deviation is taken into account without 
difficulty in Detection Decisions, through the use of Student's-f. Detection Limits, 
however, are themselves rendered imprecise if a, is not well known. (See section 3.7.3.2) 

Blanks or null effects may be described by three different terms, depending upon their origin: the 
Instrumental Backgrund is the null signal (which for certain instruments may be set to zero, on the 
average) obtained in the absence of any analyte- or interference-derived signal; the (spectrum or 
chromatogram) Baseline comprises the summation of the instrumental background plus signals in the 
analyte (peak) region of interest due to interfering species; the Bemi- is that which 
arises from contamination from the reagents, sampling procedure, or sample preparation steps which 
corresponds to the very analyte being sought. 

Assessment of the blank (and its variability) may be approached by an "external" or "internal" route, in 
close analogy to the assessment of random and systematic error components [20, ch. 91. The "external" 
approach consists of the generation and direct evaluation of a series of ideal or surrogate blanks for the 
overall measurement process, using samples which are identical or closely similar to those being taken 
for analysis -- but containing none of the analyte of interest. The CMP and matrix and interfering 
species should be unchanged. (The surrogate is simply the best available approximation to the ideal 
blank -- ie, one having a similar matrix and similar levels of interferants.) The "internal" approach 
has been described as "Propagation of the Blank." This means that each step of the CMP is examined 
with respect to contamination and interference contributions, and the whole is then estimated as the sum 
of its parts -- with due attention to differential recoveries and variance propagation. This is an 
important point: that the blank introduced at one stage of the CMP will be attenuated by subsequent 
partial recoveries. Neither the internal nor the external approach to blank assessment is easy, but one 
or the other is mandatory for accurate low-level measurements; and consistency (internal, external) is 
requisite for quality. Both approaches require expert chemical knowledge concerning the CMP in 
question. 
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- Total Error of Individual - 
Laboratory 

4. COMPOUND CMPS -- THE INTERLABORATORY ENVIRONMENT 

When a measurement process consists of two or more segments, it can be properly characterized as a 
Compound (Chemical) Measurement Process. Specification of the Performance Characteristics of a 
compound or hierarchical CMP depends upon one's viewing point or position in the hierarchy. That is, 
at least for the "tree" structure, all segments below the viewing (or "null") node consist of multiple 
branches or replicates. For the CMP that is in a state of statistical control these replicates yield a crucial 
measure of random error. (The CMP that is not in a state of control is undefined!) Only a single path 
lies above the null node; this path necessarily fixes the bias of the CMP. By moving up in the hierarchy, 
one has an opportunity to convert bias into imprecision -- put another way, what is viewed as a fixed 
(albeit unknown) error at one level of a compound CMP, becomes random at a higher level. This is 
very important, for random error may be estimated statistically through replication, but bias may not; 
yet inaccuracy (total error) necessarily comprises both components. Figure 3 presents these concepts 
schematically [34]. 

True Mean of Mean of Individual 
Value All Labs Lab L Value 

Total Error 
of Individual Value 

Fig. 3 Partitioning of method, interlaboratory, and intralaboratory error. (Adapted from Ref. 34) 

Collaborative or interlaboratory tests, which under the best of circumstances may be found at the 
uppermost node of the Compound CMP, provide one of the best means for accuracy assessment. In a 
sense, such intercomparisons epitomize W.J. Youden's recommendation that we vary all possible factors 
(that might influence analytical results), so that the observed dispersion can give us a direct experimental 
(statistical) measure of inaccuracy [35]. The basic concept, as indicated in Fig. 3, is that fixed 
intralaboratory biases are converted into random errors from the interlaboratory perspective. If the 
overall interlaboratory mean is free from bias, then the observed interlaboratory dispersion is the measure 
of both imprecision and inaccuracy. 

4.1 Silmpled Popu &bn [S] vs Target P o p u b  ' [a. The above concept has been captured by Natrella 
[17] by reference to two populations which represent, respectively, the population (of potential 
measurements) actually sampled, and that which would be sampled in the ideal, bias-free case. The 
corresponding S and T populations are shown schematically in Fig. 4, for a two-step measurement 
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process. When only the S population is randomly 
sampled (left side of the figure), the error e, from 
the first step is systematic while e, is random. In 
this case, the estimated uncertainty is likely to be 
wrong, because a) the apparent imprecision (a,) is 
too small, and b) an unmeasured bias (el) has 
been introduced. Realization of the T-Population 
(right side of the figure) requires that all steps of 
the CMP be random -- ie, e, and e2 in the figure 
behave as random, independent errors; T thus 
represents a Compound Probability Distribution. 
If the contributing errors combine linearly and are 
themselves normal, then the T-distribution also is 

is absolutely central to all hierarchical 
measurement processes (Compound CMPs), whether intralaboratory or interlaboratory. Strict attention 
to the concept is essential if one is to obtain consistent uncertainty estimates for Compound CMPs 
involving different samples, different instruments, different operators, or even different methods. In the 
context of (material) sampling, an excellent exposition of the nature and importance of the hierarchical 
structure has been presented by Horwitz [2]. 

e=Ze, 

e,=A, 

e1=81 

normal. The concept of the S and T populations Fig. ['I and Target Popu1ations. 

From the interlaboratory perspective, the first population in Fig. 4 (el)  would represent the distribution 
of errors among laboratories; the second [S] would reflect intralaboratory variation ("repeatability"); and 
the third [TI, overall variation ("reproducibility") [7,36,37]. If the sample of collaborating laboratories 
can be taken as unbiased, representative, and homogeneous, then the interlaboratory "process" can be 
treated as a compound CMP. In this fortunate (doubtless asymptotic) situation, results from individual 
laboratories are considered random, independent variates from the compound CMP population. For 
parameter estimation (means, variances) in the interlaboratory environment it may be appropriate to use 
welghts -- for example, when member laboratories employ different numbers of replicates [38]. 

4.2 Types of Interlabarittory (Collaborat ive) Tests . Interlaboratory studies commoiily have one of the 
following objectives: (1) method evaluation, (2) method comparison, (3) proficiency testing, or (4) 
establishment of reference values. Each must have its own design and approach to evaluation of the 
resulting data [36]. Detailed discussion of the various classes of interlaboratory exercises is beyond the 
scope of this report. The topic is raised because our charge to present nomenclature appropriate for the 
characterization of the Chemical Measurement Process demands consideration of the Compound CMP, 
for which the collaborative test is the ultimate manifestation. A separate document, "Nomenclature for 
Interlaboratory Analytical Studies" [39] provides in-depth treatment of this topic. Also, the reader's 
attention is directed to excellent documents concerning collaborative testing for the Certification of 
Reference Materials [8] and for the Validation of Characteristics of a Method of Analysis [36]. 
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